IPI lectures
IPI lecture, May 2023 - Prof. Bormashenko Edward.
Fibonacci Sequences, Symmetry and Order in Biological Patterns, Their Sources, Information Origin and the Landauer Principle
Physical, informational roots, exemplifications and consequences of periodic and aperiodic ordering (represented by Fibonacci series) in biological systems are discussed. The physical, informational and biological roots and role of symmetry and asymmetry appearing in biological patterns are addressed. The “top-down” and “bottom-up” approaches to the explanation of symmetry in organisms are presented and discussed in detail. The “top-down” approach implies that the symmetry of the biological structure follows the symmetry of the media in which this structure is functioning; the “bottom-up” approach, in turn, accepts that the symmetry of biological structures emerges from the symmetry of molecules constituting the structure. Informational/algorithmic roots of order inherent in the biological systems are considered. The application of the Landauer principle bridging physics and theory of information to the biological systems is discussed.
Speaker: Prof. Bormashenko Edward, Ariel University.
IPI Easter lecture 2023 - Vitaly Vanchurin.
Neuromorphic Computing: from theory to practice
There are billions of organisms on Earth, that came into existence via biological evolution. For all practical purposes these organisms can be considered as computers, but what is exactly their architecture? Do they have the classical von Neumann architecture or is there something else that we can identify and, perhaps, use for developing better computers? Do they use quantum effects or quantum computation, or all such effects are irrelevant for computations performed on the macroscopic scales of individual organisms? In this talk, Prof. Vitaly Vanchurin explains the recent theoretical advances in physics, biology and machine learning that could lead to the development of a new generation of neuromorphic computers.
Speaker: Vitaly Vanchurin.
IPI spring lecture 2023 - Trevor Page.
Beyond the veil of common sense - A logical view of nature
A simple deduced model of common sense and the process of “making sense” is presented. Several examples of irrationality due to common sense bias are identified within the fields of mathematics, science, philosophy, and religion. A series of logical proofs for the origin of the universe and its fundamental quantum nature are delivered. Preliminary expressions of the universe are developed (relative expressions of |1|), revealing what are purported to be the foundational quantum informational structures of nature. These structures, of which there are apparently 72! instances, are presumed to underpin and support the standard model, either as it currently stands, or at least future revisions of it.
Speaker: Trevor Page.
IPI Christmas lecture 2022 - Quantum Doug Matzke, Ph.D.
Bit-Physics: How to bootstrap the universe using topological bits
The key to understanding bit-physics are the twin concepts: 1) "bits are physical" (Landauer's principle) thus effecting the physical universe; 2) "bits are protophysical" (Matzke's principle), which means that the topological mathematics supporting hyperdimensional bits is fundamental to the structure of the multiverse.
Speaker: Quantum Doug Matzke, Ph.D.